数字示波器相比模拟示波器的优势,具有采样、数字化和存储波形,助你测量、分析和存档信号,波形回放等功能。但是数字示波器采样过程中也会带来很多问题。
主要影响测试结果的因素有这几个混叠、同步采样和插值器错误,除非你很清楚这些问题不然就是一个棘手的事情。很多厂商不会花费太多的时间用来讨论这些不利负面的通病会忽略掉这几个因素,因此我们要了解这些问题并且学会应对处理。下面就让我们泰勤科技来与你分享交流看看如何的应对处理出现的问题。
混叠
根据所有数字仪器和系统都应遵循的采样理论,对一个信号的采样率必须超过该信号中所包含的最大频率的两倍。如果信号被正确采样,示波器就可以从样本中重建这个信号,不会损失任何信息。在欠采样情况下,或者说采样率小于信号最高频率分量两倍时,恢复出来的信号会含有低于原始信号的频率成分,这种不想要的信号被称为混叠信号。采样率的一半被称为奈奎斯特频率,代表了可以按这个采样率数字化的信号最高频率。
图1是信号混叠的一个例子。左侧最上面的波形是一个以1GSamples/s速率采样的400MHz正弦波。左侧从上往下数第2张图是水平方向放大了的信号,从中可以看到每个周期有2个样本数。值得注意的是,这是没有经过插值的原始采样数据。左侧第3张图显示的是经过Sin(x)/x插值后的信号。这是大多数数字示波器显示的结果,因为这是它们默认的显示插值器。

图1:当一个400MHz信号被欠采样时,它会丢失信号保真度并发生混叠现象。
左侧最下面一张图是输入信号的快速傅里叶变换(FFT)结果,显示了信号的频谱或频域图。图中显示400MHz点有个频谱峰值,与这个信号的频域特性相符。
右侧最上面那个波形是以500Msamples/s速率采样的同一400MHz正弦波。采样率低于信号频率的两倍,因此信号会出现混叠。右侧从上往下数第2张图是混叠后信号的放大图。注意,信号频率变低了,在这个例子中频率100MHz。再下面一张图是应用了插值的混叠后信号,混叠后信号的FFT结果中有一个100MHz的频率峰值。需要注意的是,FFT曲线在250MHz频率点(即500MS/s采样速率的奈奎斯特频率点)被截尾了。
因为图1不是动图,因此混叠后的波形看起来似乎有一个稳定的触发信号,实际上并没有。触发电平被设为0V,正的斜率和非混叠波形展示了正确的触发电平。混叠后的波形每隔一个非混叠波形采样点才有一个采样点,会在与触发点相邻的样本点之间跳跃。这将生成具有水平“抖动”特性的曲线。